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Scab (Fusarium head blight) is a fungal disease that has become 
increasingly prevalent in North American wheat during the past 15 years. 
It is of concern to growers, processors, and the consumers because of 
depressed yields, poor flour quality, and the potential for elevated 
concentrations of the mycotoxin, deoxynivalenol (DON). Both wheat 
breeder and wheat inspector must currently deal with the assessment of 
scab in harvested wheat by manual human inspection. The study 
described herein examined the accuracy of a semi-automated wheat scab 
inspection system that is based on near-infrared (NIR) reflectance (1,000–
1,700 nm) of individual kernels. Using statistical classification techniques 

such as linear discriminant analysis and nonparametric (k-nearest-neigh-
bor) classification, upper limits of accuracy for NIR-based classification 
schemes of ≈88% (cross-validation) and 97% (test) were determined. An 
exhaustive search of the most suitable wavelength pairs for the spectral 
difference, [log(1/R)λ1 – log(1/R)λ2], revealed that the slope of the low-
wavelength side of a broad carbohydrate absorption band (centered at 
≈1,200 nm) was very effective at discriminating between healthy and 
scab-damaged kernels with test set accuracies of 95%. The achieved 
accuracy levels demonstrate the potential for the use of NIR spectroscopy 
in commercial sorting and inspection operations for wheat scab. 

 
Fusarium head blight, also known as scab, is a fungal disease 

that affects wheat and other cereals. Primarily caused by F. grami-
nearum, scab occurs during the flowering and early kernel devel-
opment stages of the plant under conditions of rain and elevated 
humidities. Depending on the year, hard red spring wheats of the 
Northern Great Plains of the United States and western prairie 
provinces of Canada are susceptible to scab (such as in 1993), as 
are the soft red winter wheat growing regions in the eastern United 
States, particularly in 1996 and 2003. Infection with Fusarium 
results in depressed yields caused by kernels that are either too 
light in mass for mechanized harvesting (Bai and Shaner 1994) or 
low in test weight (Cunfer 1987; Dexter et al 1996). Scab infec-
tion may also have a deleterious effect on flour color, ash content, 
and baking performance (Dexter et al 1996), with these and other 
quality issues recently reviewed by Dexter and Nowicki (2003). 
Also considered as a component in a category collectively called 
damaged in federal official inspection, wheat lots >2% damaged 
kernels by weight are progressively downgraded from the U.S. 
No. 1 grade (USDA-GIPSA 1997). Grade is reduced (to No. 5) 
with increased levels of damaged kernels until the weight concen-
tration reaches 15%, whereupon a lot is assigned the grade of sample 
grade. Often, domestic processors and overseas buyers have even 
more stringent criteria for percentages of scab-damaged kernels. 

Beyond that of physical damage to the kernel, F. graminearum 
can produce the metabolite, deoxynivalenol (DON), or vomitoxin, 
a tricothecene mycotoxin that is a health concern. The U.S. Food 
and Drug Administration (FDA) has established an advisory level 
for DON in finished wheat products (e.g., flour, semolina) intended 
for human consumption at 1 ppm, and at higher levels (5–10 
ppm) for livestock and poultry feeds. Teich et al (1987) measured 
a positive correlation between the levels of DON and scab 
damage. Therefore, as a means to improve the quality and safety 
of wheat in the United States, the USDA is currently seeking new 

methods for grain inspection, inclusive of those that address 
kernel damage (e.g., scab) that are rapid and objectively based. 

Numerous procedures are available for measurement of DON 
level concentration in wheat meal and flour, including those based 
on thin-layer chromatography (Truckness et al 1984; Fernandez et 
al 1994), liquid chromatography (Chang et al 1984; Trenholm et 
al 1985; Rajaklyä et al 1987), gas chromatography (GC) (Terhune 
et al 1984; Ware et al 1984; Scott et al 1986; Tacke et al 1996), 
GC with mass spectrometry (Scott et al 1981), and enzyme-linked 
immunosorbent assay (ELISA) (Casale et al 1988; Usleber et al 
1991, 1993; Abramson et al 1998). However, these procedures are 
not adaptable to rapid (<1 min/sample) testing for inspection or 
process control. 

Rapid inspection or sorting methods for grain are typically based 
on kernel density (Tkachuk et al 1991) or optical properties (Ruan 
et al 1998). Preliminary research by Williams (1997) demonstrated 
moderate success with the NIR modeling of DON in bulk samples. 
Recent work by Pettersson and Åberg (2003) on scab-damaged 
wheat prepared by dilution series has also indicated the potential 
of DON level by whole grain NIR transmittance. At the single 
kernel level, Dowell et al (1999) examined the ability of NIR re-
flectance to measure DON concentration. Using a similar approach 
to that described herein on a limited set of officially inspected 
wheat, we demonstrated the ability to distinguish normal, mold-
damaged, and scab-damaged categories (Delwiche 2003). Based 
on a more diverse collection of hard red spring wheat samples, 
the research described herein was directed at identifying regions 
within the near-infrared (NIR) region of 1,000–1,700 nm that can 
be used, with or without kernel mass, to determine the extent of 
scab-damage within wheat samples through single kernel inspection. 
Specifically, the objective of this study was to identify and char-
acterize a pair of wavelengths for an NIR reflectance system that 
can form the basis of a commercial sorting device or inspection 
instrument. 

MATERIALS AND METHODS 

Wheat. Hard red spring wheat samples were obtained from two 
distinct breeders’ trials. The first trial consisted of the 37 lines 
that were the basis for the Hard Red Spring Uniform Regional 
Nursery (HRS-URN) trial set for the 2002 harvest. Of the 37 
lines, five were commercial releases (cultivars Marquis, Chris, 
2375, Verde, and Keene); the remaining were breeders’ advanced 
lines. All lines were grown in field plots under conventional 
growing practices at two geographical locations, Crookston and 
St. Paul, MN. The second trial consisted of a breeder’s advanced 
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yield (AY) set, in which 45 lines from seven commercial releases 
(Oxen, Alsen, Verde, Bacup, Roblin, McVey, and Wheaton) were 
grown in the 2002 harvest in two replicates in randomized com-
plete blocks at the same locations as the first trial. One replicate 
from St. Paul was unavailable. Wheat plants of the AY St. Paul 
samples were inoculated with Fusarium by conidia spraying at 
the heading stage. The AY Crookston plants were also inoculated 
with Fusarium, however, the inoculation was performed by 
spreading corn kernels that had been infected with 10 strains of 
naturally occurring Fusarium onto the developing wheat plants at 
the jointing stage. 

Equipment. The NIR (943.3–1,704.6 nm) spectrometer assembly 
was described earlier (Delwiche 2003). Briefly, it consisted of a 
Zeiss MCS511 (Jena, Germany) diode array bench unit operating 
within the Grams/32 (Galactic Industries, Salem, NH) software 
environment. Lighting was supplied by two externally controlled 
5V, 150 mA tungsten filament lamps with gold-coated parabolic 
reflectors. Reflectance energy values were referenced to sintered 
polytetrafluoroethylene (Spectralon, Labsphere, Sutton, NH) of 
≈98% absolute reflectance. The integration time was 6.8 msec/scan, 
and the number of co-adds was set to 32, whereupon the spectrum 
was transformed to log(1/R) and stored in a computer file. Because 
of a slight variation in wavelength difference between neighboring 
points (5.85–6.23 nm range), wavelength values were stored in 
addition to spectral response values. With linear interpolation 
between adjacent array elements, the spectrum was later adjusted 
to a constant wavelength spacing of 6 nm. Poor spectral response 
at wavelengths of <1,000 nm necessitated the truncation of the 
useable region to 1,002–1,704 nm (118 points total). 

A computer-controlled two-axis movable stage, whose surface 
contained 49 (7 × 7 array) half-kernel-depth slots, was used to 
position each kernel with respect to the external lamp assembly 
that included a pickup optical 600-µm diameter single fiber. Aside 
from placing the long axis of each kernel at a constant direction, 
the positioning of the kernel within its slot was performed by 
random placement. This semi-random alignment approach was 
used for two reasons: 1) because truly automated systems will most 
likely be able to achieve this degree of alignment; and 2) previous 
research (Delwiche 2003) did not reveal a large improvement in 
accuracy when the rotational alignment of the kernel about its long 
axis was kept constant (crease down). Stage movement was staggered 
in time with respect to the duty cycle of the spectrometer, so that 
the kernels were scanned while at rest. 

Procedure. All samples were stored at room ambient conditions 
(≈20°C, 50% rh). The kernels from each sample (5 g) were 
manually examined for visual scab damage. To avoid the problem 
of mistaking bleached but otherwise normal kernels for scab-
damaged kernels, the visual analysis was primarily based on the 
texture of the kernel surface, with kernels having a noticeably 
shriveled appearance selected for the scab-damaged category. De-
pending on the severity of the scab in each URN sample, between 
3 and 49 scab-damaged kernels were selected, with the upper 
number equaling the number of slots in the surface of the movable 
stage. From the same sample, an equal number of kernels of 
normal appearance were drawn. Before scanning, kernels in each 
sample were separately weighed to the nearest 0.01 mg. Altogether, 
for the URN set, 868 scab-damaged kernels and an equal number 
of normal kernels were weighed and scanned. Spectral scanning 
of all URN samples was completed before commencing the scans 
of the AY samples. 

For the AY samples, 10 scab-damaged and 10 normal kernels 
were drawn from each sample. The only procedural difference with 
this set of samples was in the sequencing of scab-damaged and 
normal kernels during scanning. For this set, the kernels in each 
sample were scanned in an alternating pattern (N1S1…N10S10, 
where N = normal, S = scab-damaged, and the index is the kernel 
number), as opposed to a one-group-first pattern (N1…NnS1…Sn, 
where the subscript n is the number of kernels in each category of 

a sample) procedure of the URN set. This change in procedure was 
intended to minimize the likelihood of instrument bias affecting 
classification predictions. Altogether, the AY set consisted of 1,790 
kernels each of scab-damaged and normal types. 

Repeatability. One sample from the AY set was arbitrarily selec-
ted (i.e., the first replicate of Verde from St. Paul) for repeated 
spectral measurement. The 10 normal and 10 scab-damaged kernels 
of this sample were repeatedly loaded on the movable stage, 
scanned, and removed from the stage a total of five times. 

DON analysis. For the purpose of corroborating the presence of 
the mycotoxin in the visually scab-damaged and normal kernels, 
the repeatability sample was also used for DON analysis. The 
appearance of the 20 kernels of this sample was typical of that of 
all the samples. Digital images of these kernels under low magni-
fication were collected. These kernels were then individually 
ground and analyzed for DON concentration by ELISA. 

Classification modeling. Samples from the URN set were used 
in the development (by cross-validation) of each classification 
model, while samples from the AY set were reserved for testing the 
model. Results from a previous study indicated that the optimal 
classification models by linear discriminant analysis (LDA), as 
gauged by a high number of correct assignments and a low number 
of variables, was achieved with a wavelength difference [Aλ1 – 
Aλ2 = log(1/R)λ1 – log(1/R)λ2] and kernel mass (Delwiche 2003). 
Therefore, the current study placed an emphasis on this model 
structure, although other models (defined later) were tested. 
Using the procedure Discrim (SAS Institute Inc., Cary, NC) 
within a SAS Macro loop, an exhaustive search of all wavelength 
differences (6,903 possibilities) was performed to identify the dif-
ferences that produced high average leave-one-out cross-validation 
accuracies. The squared distance metric for the discriminant func-
tion was based on a pooled (across-category) covariance matrix. 
Particular interest was given to differences formed from wave-
lengths that were equal to or less than the half-width of absorp-
tion bands apparent in the log(1/R) spectra. In such cases, a 
difference could be interpreted to represent the slope (i.e., first 
derivative) of the spectrum at the midpoint between the wave-
lengths. In so doing, classification ability becomes interpretable 
in terms of the spectral first derivative. 

Another modeling approach included linear discriminant analysis, 
using the scores from a principal components analysis (PCA) of 
the 1,102–1,704 nm spectrum as variables. In this case, the SAS 
procedures Princomp and Stepdisc were used to reduce the 
number of spectral points from 118 wavelengths to between 1 and 
15 factors, and identify the three most important PC, respectively. 
As detailed by Downey et al (1994), these PC are not necessarily 
the ones of greatest corresponding eigenvalues (PC 1, 2, …) but 
rather, the ones that are most beneficial in group separation. 
Linear discriminant models, with and without kernel mass, were 
evaluated by cross-validation and by application of the model to 
the test set. In the latter application, the SAS procedure Scores 
was first used to calculate the scores of the samples from the test 
set with respect to the basis of the cross-validation set PC. This 
sequence of steps was also used to develop a sequence of non-
parametric (k-nearest-neighbor) models. Between k = 1 and 49 
nearest neighbors (even numbers excluded to avoid occurrences 
of ties) were examined. Based on morphological and color 
features from digital image analysis, similar parametric and 
nonparametric discriminant analyses in SAS for recognition of 
various categories of wheat kernel damage (not including scab) 
were used with success by Luo et al (1999). One additional whole-
spectrum approach, partial least squares (PLS) regression, was 
examined, due to the successful application of this approach in 
the single-kernel classification of red vs. white wheat (Delwiche 
and Massie 1996; Dowell 1998; Wang et al 1999). With this 
approach, the normal and scab-damaged kernels were regressed 
to two constant values, such that the midpoint between these 
values constituted the boundary between classes. The purpose of 
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including the whole-spectrum approaches was to establish a realistic 
limit for the accuracies of the LDA wavelength difference models. 
Undoubtedly, classification accuracy is limited by the reference 
visual analysis procedure because it is known that Fusarium can 
be present in kernels of healthy appearance (Dexter and Nowicki 
2003). 

RESULTS AND DISCUSSION 

A composite image of kernels that were representative of the 
normal and scab-damaged categories is shown in Fig. 1. Ten 
kernels are shown as representative of the 20 kernels that consti-
tuted one sample of the AY set, whose appearance, in turn, is 
representative of all the hand-selected and scanned kernels of the 
present study. Also included in Fig. 1 are the DON concen-
trations. Of the five kernels with visible scab damage, the DON 
concentration range was 14–880 ppm. Generally, the degree of 
visible scab damage coincided with the DON level. Of the five 

normal kernels, all but one had a DON level of <5 ppm. The 
remaining normal kernel, at 15 ppm, was approximately equi-
valent in DON level as the least affected of the five scab-damaged 
kernels. Compared with kernel plumpness, length and width of 
the kernels were much less affected by scab. 

The distributions of kernel mass are separately shown by cate-
gory for the URN and AY sets in Fig. 2A and B, respectively. 
Scab-damaged kernels seldom weighed >30 mg. Conversely, 
normal kernels seldom weighed <15 mg. Using mass alone on 
samples from the individual locations, LDA models achieved average 
cross-validation classification accuracies of 80.9 and 85.3% for 
the Crookston and St. Paul locations, with corresponding average 
test classification accuracies of 88.9 and 88.7% (Table I). When 
the two locations were combined, the resulting average classi-
fication accuracies were 83.8 and 89.3% for the cross-validation 
and test sets, respectively. Thus, these values stand as a basis for 
the development of NIR models, for which the improvement in 
accuracy associated with an NIR model, with or without inclu-
ding kernel mass, must be considered in context of the additional 
complexity in hardware of a scab-detection instrument. However, 
it is reasoned that mass-alone models would experience a lower 
level of accuracy with the inclusion of samples from other culti-
vars and geographical regions. 

Plots of the spectra of normal and scab-damaged kernels, shown 
as averages and one-standard deviation envelopes for the URN 
samples, indicate that, while on average, the two categories are spec-
trally distinct, the degree of spectral variation within a category is 
sufficiently large to preclude the use of single-wavelength classi-
fication models (Fig. 3). When the first derivatives of the average 
spectra are formed (using an 11-point Savitzky-Golay second-
order polynomial convolution), it is seen that the degree of overlap 
between categories becomes substantially lessened, especially in 
the 1,120–1,180 nm and 1,320–1,370 nm regions. Therefore, classi-
fication models that are based on wavelength differences should 
be superior to models that are based on single wavelengths. 

Results of the average classification accuracies for all classifi-
cation models examined are summarized in Table I. With the 
exception of the mass-alone models, the accuracies correspond to 
models that were developed from combining both geographical 
locations. Average cross-validation accuracy ranged from 82.1% 
(a wavelength difference, without kernel mass model) to 88.8% (a 
k-nearest-neighbor, with kernel mass model). Although the lower 
value in this range was indeed lower than that for a model using 
mass alone (83.8%), the corresponding accuracies of these models 
on the test (AY) set indicated that the spectrally based models, 
with accuracies >92% were clearly better than the mass-alone 
model. 

Fig. 2. Histograms of single kernel masses. A, URN cross-validation set 
(normal [n = 868], scab-damaged [n = 868]); B, AY test set (normal [n = 
1,790] scab-damaged [n = 1,790]). 

 

Fig. 1. Images of normal (upper row) and visually scab-damaged (lower row) kernels. Level of DON concentration is (upper row, left to right)  0.0, 1.7,
4.9, 4.4, and 15 ppm; (lower row, left to right) 180, 14, 880, 750, and 500 ppm. 
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Based on test set accuracy, there were only slight differences 
between models that were based on PC scores and those that were 
based on a wavelength difference. Typically, the accuracy range 
was 95 and 97%. Improvement beyond this level of accuracy is 
probably not possible without a change in the reference method 
for classification (visual analysis), which undoubtedly introduced 
error through the categorization of a small (but unknown) fraction 
of scab-damaged kernels as normal kernels, and vice versa. For 
the k-nearest-neighbor model, the number of neighbors needed to 
achieve stable optimal accuracies was ≈21 (Fig. 4). The fact that 
the average accuracy of each classification model when applied to 
the test set was 3–12 percentage units higher than that of the 
cross-validation (URN) set indicates that the latter set had a 
greater degree of overlap, in both spectral and mass, between the 
two categories. This suggests that the URN set had greater 
spectral diversity, and therefore was the better of the two sets for 
model development. 

The best wavelength difference, determined by the stepwise dis-
criminant analysis procedure (Stepdisc), was (A1248 nm – A1140 nm), 
with average cross-validation and test set accuracies of 82.1 and  
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Fig. 3. Mean log(1/R) and first-derivative spectra ± 1 SD envelopes for each category of cross-validation samples (n = 868 spectra/category). N, normal;
S, scab-damaged. 

TABLE I 
Average Classification Accuracies for Various Discriminant Analysis Models 

  Average Accuracy (%)  

Modela Locations Included Cross-Validation (n = 1,736) Test (n = 3,580) 

LDA on mass Crookston 80.9 88.9 
LDA on mass St. Paul 85.3 88.7 
LDA on mass Both 83.8 89.3 
LDA on PC 2,3,1 Both 83.1 95.7 
LDA on PC 2,3,1, mass Both 88.5 97.2 
KNN (k = 21) on PC 2,3,1  Both 82.0 95.7 
KNN (k = 21) on PC 2,3,1, mass Both 88.8 97.0 
PLS 9-factor Both 87.8 92.4 
LDA on A1248 – A1140 Both 82.1 94.9 
LDA on A1248 – A1140, mass Both 87.0 94.9 
LDA on A1188 – A1128 Both 82.1 94.8 
LDA on A1188 – A1128, mass Both 86.9 95.1 

a LDA, linear discriminant analysis; KNN, k-nearest-neighbor; PLS, partial least squares; PC, principal components; Ax, log(1/R)λ = x nm. 
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Fig. 4. Classification accuracy of a k-nearest-neighbor model of scores of
the first three principal components as a function of the number of nearest
neighbors during model development (X-Val) and validation (Test). 
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94.9%, respectively, being nearly equivalent to the corresponding 
accuracies of the k-nearest-neighbor model (82.0 and 95.7%). 
Many other wavelength differences produced cross-validation 
accuracies that were within 0.5 percentage units of the optimal 
difference. To determine the existence of any trends in the selection 
of wavelength differences, a contour plot of the overall average 
cross-validation accuracy was produced (Fig. 5) where the axes 
represent the wavelengths used in forming the differences, and 
the degree of grayness represents accuracy (darker = more 
accurate). The near-white contour regions of low accuracy that 
appear as circuitous loops near x = 1,150 nm (y = 1,000–1,100 
nm), x = 1,200–1,360 nm (y = 1,170–1,300 nm), and x = 1,500–
1,700 nm (y = 1,400–1,670 nm) correspond to wavelength pairs 
in which the spectral absorption values were equal within each 
pair, such as on opposite sides of a broad absorption band. 
Evident from this plot is the greater importance of the lower end 
of the 1,000–1,700 nm scanned region, for both terms in a dif-
ference expression. Specifically, for the difference (Ax – Ay), the 

optimal values for x were in the 1,150–1,300 nm region, while the 
optimal values for y were in the 1,000–1,150 nm region. 
Combined, these regions define the broad absorption band centered 
near 1,200 nm, which is attributed to the second overtone of CH 
stretch from carbohydrates (Osborne and Fearn 1986). The left 
(short wavelength) side of this absorption band, specifically between 
1,130–1,190 nm, appeared to be a very stable region for defining 
a difference that could be used in classifying normal and scab-
damaged kernels. Recalling that a difference in neighboring values 
of a mathematical function represents an approximation to the instan-
taneous slope or first derivative of the function, it is seen that the 
1130–1190 nm region captures the wavelength (1,158 nm) where 
the 1st derivative encounters a local maximum (Fig. 3). Thus, wave-
lengths that are centered near this local maximum are well suited 
to produce stable high classification accuracies. Two wavelengths, 
1,128 and 1,188 nm, were selected for classification analysis because 
they mark the beginning and ending points of the left side of the 
1,200 nm absorption band and are equidistant from 1,158 nm. 

TABLE II 
Classification Results for Linear Discriminant Analysis Model Utilizing [log(1/R)λ = 1188 nm – log(1/R)λ = 1128 nm] With and Without Kernel Mass 

 Number of Kernels Assigned to Categorya 

 Cross-Validation Set Test Set 

Actual Category Scab Normal Total Scab Normal Total 

Without mass       
Scab 744 (85.7) 124 (14.3) 868 1,745 (97.0) 45 (2.5) 1,790 
Normal 186 (21.4) 682 (78.6) 868 143 (8.0) 1,647 (92.0) 1,790 
Total 930 (53.6) 806 (46.4) 1,736 1,888 (52.7) 1,692 (47.3) 3,580 

With mass       
Scab 767 (88.4) 101 (11.6) 868 1,684 (94.1) 106 (5.9) 1,790 
Normal 127 (14.6) 741 (85.4) 868 68 (3.8) 1,722 (96.2) 1,790 
Total 894 (51.5) 842 (48.5) 1,736 1,752 (48.9) 1,828 (51.1) 3,580 

a Diagonal values, in bold, represent correct assignments. Percent of total listed in parentheses. 

 

Fig. 5. Contour plot of the average cross-validation accuracy of a two-wavelength spectral difference [log(1/R)λ x-axis – log(1/R)λ y-axis]. Numbers in the 
legend refer to the average accuracies (in percent/100) of corresponding gray color levels. 
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The (A1188 nm – A1128 nm) without-mass model achieved an 
overall cross-validation accuracy of 82.1% (Table I). With mass, 
this rate reached 86.9%. When applied to the test set, the two 
models achieved overall accuracies of 94.8 and 95.1%, respectively. 
For either model, the cross-validation and test accuracies were 
essentially equivalent (±0.2%) to the corresponding accuracies of 
the SAS best difference (A1248 nm – A1140 nm), with- and without- 
mass, model accuracies. Identified by category, misclassifications 
during cross-validation occurred more frequently for normal kernels 
identified as scab-damaged, as opposed to scab kernels identified 
as normal, regardless of whether the model included mass (Table II). 
During application to the test set, the models were not consistent 
in terms of which category had the greater number of misclassi-
fications. Rather, misclassification occurred at a greater rate with 
normal kernels when mass was not included in the model and a 
lesser rate when mass was included. Plots of (A1188 nm – A1128 nm) 
vs. kernel mass for the test set are shown in Fig. 6A (Crookston) 
and Fig. 6B (St. Paul). Within each graph, misclassified normal 
kernels are those lying to the left of the boundary that marks the 
line where posterior probability from linear discriminant analysis is 
equal between categories. Likewise, misclassified scab-damaged 
kernels are those to the right of the boundary line. Similar analysis 
in which a quadratic discriminant function was used (covariance 
matrices of the two groups are not pooled) did not improve cross-
validation and test set accuracies (results not shown). 

Repeatability of wavelength difference model. When 20 kernels 
(10 normal, 10 scab-damaged) of one AY set sample were repeat-
edly loaded and scanned five times, the application of the (A1188 nm 
– A1128 nm) with-kernel-mass model resulted in correct classi-
fication in all but three of 100 applications (Fig. 7). The three mis-
classifications occurred on the same kernel (center image in the 
top row of Fig. 1), which, of the 10 normal kernels examined had 
the smallest mass from that category. Still, this kernel was greater 
in mass than the heaviest of the scab-damaged kernels, indicating 
that, in this case, mass alone could have been used as the classifier. 
As the magnitude of (A1188 nm – A1128 nm) increased and as kernel 
mass increased, so did the variability of this spectral difference. 
Therefore, it is logical that the kernels most susceptible to misclass-
ification are those of intermediate mass and spectral difference. 

Using both light and electron microscopy, Bechtel et al (1985) 
observed that Fusarium-damaged kernels had degraded starch 
granules and a general dissolution of the starchy endosperm walls 
and parts of the starchy endosperm, as well as an invasion of the 
fungus into the storage protein matrix. The fungi’s preference for 
endosperm instead of germ, as stated in Bechtel et al (1985), is 
thought to be the reason for the high classification accuracies 
associated with the 1,200 nm carbohydrate band. Because it was 
beyond the scope of this study to examine other wheat-damaging 
molds, it is not possible to definitively state the specificity of the 
broad carbohydrate absorption band at 1,200 nm toward molds 
other than Fusarium. However, recent work by Pearson et al 
(2004) on detection of Aspergillus flavus on yellow corn kernels 
for two-wavelength high-speed sorting has demonstrated the prefer-
ence of 1,200 nm in combination with absorbance at a smaller 
wavelength (750 nm, in which a wavelength at <1,000 nm is 
mandated because of sorter detector element constraints). These 
wavelengths were also suitable at the detection of F. verticillioides, 
a fungus responsible for the production of fumonisins in corn. 
Therefore, it is postulated that the 1,200 nm band, in general, is 
sensitive for detection of kernels afflicted with nonstorage fungi. 

SUMMARY AND CONCLUSIONS 

Identification of scab-damaged wheat kernels is most effective 
when single kernel NIR reflectance is combined with kernel mass. 
For scanning, the kernels may be oriented in just a semi-random 
basis, in which the rotational angle about a kernel’s long axis is 
arbitrary. Simple classification model structures such as linear 
discriminant analysis (LDA) operating on the difference of 
spectral absorption at two wavelengths and mass at 95% test set 
average accuracy performed nearly as well as whole spectrum 
parametric (LDA on principal component scores) or nonpara-

Fig. 7. Repeatability readings of [log(1/R)λ 1188 nm – log(1/R)λ 1128 nm] and 
kernel mass. Each kernel from one sample (10 normal, 10 scab-damaged) 
of the St. Paul AY set was repeatedly loaded and scanned five times. 

 

Fig. 6. Two-wavelength spectral difference [log(1/R)λ 1188 nm – log(1/R)λ 1128 nm] vs. kernel mass of the test set samples. A, Crookston location (normal [n = 
890], scab-damaged [n = 890]); B, St. Paul location (normal [n = 900], scab-damaged [n = 900]). Boundary line between categories determined by linear 
discriminant analysis on cross-validation sample set (both locations combined) included on each graph. 
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metric (k-nearest-neighbor) models. The best wavelengths to use 
in a spectral difference model were located in the sloped region 
that approaches the broad absorption band at ≈1,200 nm. Essen-
tially, the left-side (shorter wavelength) slope of this absorption 
band can be used to discriminate between normal and scab-
damaged kernels. While the classification accuracies may not be 
sufficient for fully automated official inspection, it is thought that 
a two-wavelength system could have application in high-speed 
commercial sorting and for use as a breeder’s assistant. Quan-
tification of the reduction in levels of DON that can be achieved 
through sorting and the examination of wavelengths at <1,000 nm 
are the subjects of future research. 

ACKNOWLEDGMENTS 

We wish to thank J. Anderson (Univ. of Minnesota) for the wheat 
samples, B. Stetzler (ARS, Beltsville) for spectral data collection, P. Hart 
(Michigan State Univ.) for DON analysis, and A. Collins (ARS, 
Beltsville) for the production of the magnified images. 

LITERATURE CITED 

Abramson, D., Clear, R. M., Usleber, E., Gessler, R., Nowicki, T. W., and 
Märtlbauer, E. 1998. Fusarium species and 8-keto-trichothecene 
mycotoxins in Manitoba barley. Cereal Chem. 75:137-141. 

Bai, G.-H., and Shaner, G. 1994. Scab of wheat: Prospects for control. 
Plant Dis. 78:760-766. 

Bechtel, D. B., Kaleikau, L. A., Gaines, R. L., and Seitz, L. M. 1985. The 
effects of Fusarium graminearum infectin on wheat kernels. Cereal 
Chem. 62:191-197. 

Casale, W. L., Pestka, J. J., and Hart, L. P. 1988. Enzyme-linked immun-
osorbent assay employing monoclonal antibody specific for deoxyni-
valenol (vomitoxin) and several analogues. J. Agric. Food Chem. 
35:663-668. 

Chang, H. L., DeVries, J. W., Larson, P. A., and Patel, H. H. 1984. Rapid 
determination of deoxynivalenol (vomitoxin) by liquid chromatography 
using modified Romer column cleanup. J. AOAC 67:52-54. 

Cunfer, B. M. 1987. Bacterial and fungal blights of the foliage and heads 
of wheat. Pages 528-541 in: Wheat and Wheat Improvement, 2nd Ed. 
E. G. Heyne, ed. Am. Soc. Agron.: Madison, WI. 

Delwiche, S. R. 2003. Classification of scab- and other mold-damaged 
wheat kernels by near-infrared reflectance spectroscopy. Trans. ASAE 
46:731-738. 

Delwiche, S. R., and Massie, D. R. 1996. Classification of wheat by visible 
and near-infrared reflectance spectroscopy. Cereal Chem. 73:399-405. 

Dexter, J. E., and Nowicki, T. W. 2003. Safety assurance and quality 
assurance issues associated with Fusarium head blight in wheat. Pages 
420-460 in: Fusarium Head Blight of Wheat and Barley. K. J. Leonard 
and W. R. Bushnell, eds. APS: St. Paul, MN. 

Dexter, J. E., Clear, R. M., and Preston, K. R. 1996. Fusarium head 
blight: Effect on the milling and baking of some Canadian wheats. 
Cereal Chem. 73:695-701. 

Dowell, F. E. 1998. Automated color classification of single wheat kernels 
using visible and near-infrared reflectance. Cereal Chem. 75:142-144. 

Dowell, F. E., Ram, M. S., and Seitz, L. M. 1999. Predicting scab, 
vomitoxin, and ergosterol in single wheat kernels using near-infrared 
spectroscopy. Cereal Chem. 76:573-576. 

Downey, G., Boussion, J., and Beauchene, D. 1994. Authentication of 
whole and ground coffee beans by near-infrared reflectance spectro-
scopy. J. Near Infrared Spectrosc. 2:85-92. 

Fernandez, C., Stack, M. E., and Musser, S. M. 1994. Determination of 
deoxynivalenol in 1991 U.S. winter and spring wheat by high-perfor-
mance thin-layer chromatography. J. AOAC Int. 77:628-630. 

Luo, X., Jayas, D. S., and Symons, S. J. 1999. Identification of damaged 
kernels in wheat using a colour machine vision system. J. Cereal Sci. 
30:49-59. 

Osborne, B. G., and Fearn, T. 1986. Near-Infrared Spectroscopy in Food 
Analysis. Wiley and Sons: New York 

Pearson, T. C., Wicklow, D. T., and Pasikatan, M. C. 2004. Reduction of 
aflatoxin and fumonisin contamination in yellow corn by high-speed 
dual wavelength sorting. Cereal Chem. 81:490-498. 

Pettersson, H., and Åberg, L. 2003. Near-infrared spectroscopy for 
determination of mycotoxins in cereals. Food Control 14:229-232. 

Rajaklyä, E., Laasasenaho, K., and Sakkers, P. J. D. 1987. Determination 
of mycotoxins in grain by high-performance liquid chromatography and 
thermospray liquid chromatography-mass spectrometry. J. Chromatogr. 
384:391-402. 

Ruan, R., Ning, S., Song, A., Ning, A., Jones, R., and Chen, P. 1998. 
Estimation of Fusarium scab in wheat using machine vision and a 
neural network. Cereal Chem. 75:455-459. 

Scott, P. M., Kanhere, S. R., and Tarter, E. J. 1986. Determination of 
nivalenol and deoxynivalenol in cereals by electron-capture gas chroma-
tography. J. AOAC 69:889-893. 

Scott, P. M., Lau, P.-Y., and Kanhere S. R. 1981. Gas chromatography with 
electron capture and mass spectrometric detection of deoxynivalenol in 
wheat and other grains. J. AOAC 64:1364-1371. 

Tacke, B. K. and Casper, H. H. 1996. Determination of deoxynivalenol in 
wheat, barley, and malt by column cleanup and gas chromatography 
with electron capture detection. J. AOAC Int. 79:472-475. 

Teich, A. H., Shugar, L., and Smid, A. 1987. Soft white winter wheat 
cultivar field-resistance to scab and deoxynivalenol accumulation. 
Cereal Res. Commun. 15:109-114. 

Terhune, S. J., Nguyen, N. V., Baxter, J. A., Pryde, D. H., and Qureshi, S. 
A. 1984. Improved gas chromatographic method for quantitation of 
deoxynivalenol in wheat, corn, and feed. J. Assoc. Off. Anal. Chem. 
67:1102-1104. 

Tkachuk, R., Dexter, J. E., Tipples, K. H., and Nowicki, T. W. 1991. 
Removal by specific gravity table of tombstone kernels and associated 
trichothecenes from wheat infected with Fusarium head blight. Cereal 
Chem. 68:428-431. 

Trenholm, H. L., Warner, R. M., and Prelusky, D. B. 1985. Assessment of 
extraction procedures in the analysis of naturally contaminated grain 
products for deoxynivalenol (vomitoxin). J. AOAC 68:645-649. 

Truckness, M. W., Nesheim, S., and Eppley, R. M. 1984. Thin layer 
chromatographic determination of deoxynivalenol in wheat and corn. J. 
Assoc. Anal. Chem. 67:40-43. 

USDA-GIPSA. 1997. Wheat. Chapter 13 in: Grain Inspection Handbook, 
Book II (release date 6/1/97). Grain Inspection, Packers and Stockyards 
Administration. USDA: Washington, DC. 

Usleber, E., Märtlbauer, E., Dietrich, R., and Terplan, G. 1991. Direct 
enzyme-linked immunosorbent assays for the detection of the 8-
ketotrichothecene mycotoxins deoxynivalenol, 3-acetyldeoxynivalenol, 
and 15-acetyldeoxynivalenol in buffer solutions. J. Agric. Food Chem. 
39:2091-2095. 

Usleber, E., Schneider, E., Märtlbauer, E., and Terplan, G. 1993. Two 
formats of enzyme immunoassay for 15-acetyldeoxynivalenol applied 
to wheat. J. Agric. Food Chem. 41:2019-2023. 

Wang, D., Dowell, F., and Lacey, R. 1999. Single wheat kernel color 
classification by using near-infrared reflectance spectra. Cereal Chem. 
76:30-33. 

Ware, G. M., Carman, A., Francis, O., and Kuan, S. 1984. Gas chromato-
graphic determination of deoxynivalenol in wheat with electron capture 
detection. J. AOAC 67:731-734. 

Williams, P. C. 1997. Recent advances in near-infrared applications for the 
agriculture and food industries. Pages 109-128 in: Proc. Int. Wheat Qual-
ity Conf. J. L. Steele and O. K. Chung, eds. Grain Industry Alliance: 
Manhattan, KS. 

[Received October 29, 2003. Accepted May 5, 2004.] 
 
 


